lz complexity in chaotic dynamical systems and the quasiperiodic fibonacci sequence

نویسندگان

داود آراسته

d. arasteh محمدرضا کلاه چی

m. r. kolahchi

چکیده

the origin the concept of lz compexity is in information science. here we use this notion to characterize chaotic dynamical systems. we make contact with the usual characteristics of chaos, such as lyapunov exponent and k-entropy. it is shown that for a two-dimensional system lz complexity is as powerful as other characteristics. we also apply lz complexity to the study of the quasiperiodic fibonacci sequence. we prove a theorem about its lz complexity and based upon it conclude its long range order.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیچیدگی LZ سیستم های دینامیکی آشوبی و سیستم شبه تناوبی فیبوناچی

  The origin the concept of LZ compexity is in information science. Here we use this notion to characterize chaotic dynamical systems. We make contact with the usual characteristics of chaos, such as Lyapunov exponent and K-entropy. It is shown that for a two-dimensional system LZ complexity is as powerful as other characteristics. We also apply LZ complexity to the study of the quasiperiodic F...

متن کامل

LI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS

‎In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$‎ ‎for finite discrete $X$ with at least two elements‎, ‎infinite countable set $Gamma$ and‎ ‎arbitrary map $varphi:GammatoGamma$‎, ‎the following statements are equivalent‎: ‎ - the dynamical system $(X^Gamma,sigma_varphi)$ is‎ Li-Yorke chaotic;‎ - the dynamical system $(X^Gamma,sigma_varphi)$ has‎ an scr...

متن کامل

Global and local Complexity in weakly chaotic dynamical systems

In a topological dynamical system the complexity of an orbit is a measure of the amount of information (algorithmic information content) that is necessary to describe the orbit. This indicator is invariant up to topological conjugation. We consider this indicator of local complexity of the dynamics and provide different examples of its behavior, showing how it can be useful to characterize vari...

متن کامل

Orbit complexity, initial data sensitivity and weakly chaotic dynamical systems

We give a definition of generalized indicators of sensitivity to initial conditions and orbit complexity (a measure of the information that is necessary to describe the orbit of a given point). The well known Ruelle-Pesin and Brin-Katok theorems, combined with Brudno’s theorem give a relation between initial data sensitivity and orbit complexity that is generalized in the present work. The gene...

متن کامل

Complexity in Hamiltonian-driven dissipative chaotic dynamical systems.

The existence of symmetry in chaotic dynamical systems often leads to one or several low-dimensional invariant subspaces in the phase space. We demonstrate that complex behaviors can arise when the dynamics in the invariant subspace is Hamiltonian but the full system is dissipative. In particular, an infinite number of distinct attractors can coexist. These attractors can be quasiperiodic, stra...

متن کامل

li-yorke chaotic generalized shift dynamical systems

‎in this text we prove that in generalized shift dynamical system $(x^gamma,sigma_varphi)$‎ ‎for finite discrete $x$ with at least two elements‎, ‎infinite countable set $gamma$ and‎ ‎arbitrary map $varphi:gammatogamma$‎, ‎the following statements are equivalent‎: ‎ - the dynamical system $(x^gamma,sigma_varphi)$ is‎ li-yorke chaotic;‎ - the dynamical system $(x^gamma,sigma_varphi)$ has‎ an scr...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
پژوهش فیزیک ایران

جلد ۱، شماره ۴، صفحات ۲۰۷-۲۲۱

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023